首页> 外文OA文献 >Label-driven weakly-supervised learning for multimodal deformable image registration
【2h】

Label-driven weakly-supervised learning for multimodal deformable image registration

机译:用于多模态可变形图像的标签驱动的弱监督学习   注册

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Spatially aligning medical images from different modalities remains achallenging task, especially for intraoperative applications that require fastand robust algorithms. We propose a weakly-supervised, label-driven formulationfor learning 3D voxel correspondence from higher-level label correspondence,thereby bypassing classical intensity-based image similarity measures. Duringtraining, a convolutional neural network is optimised by outputting a densedisplacement field (DDF) that warps a set of available anatomical labels fromthe moving image to match their corresponding counterparts in the fixed image.These label pairs, including solid organs, ducts, vessels, point landmarks andother ad hoc structures, are only required at training time and can bespatially aligned by minimising a cross-entropy function of the warped movinglabel and the fixed label. During inference, the trained network takes a newimage pair to predict an optimal DDF, resulting in a fully-automatic,label-free, real-time and deformable registration. For interventionalapplications where large global transformation prevails, we also propose aneural network architecture to jointly optimise the global- and localdisplacements. Experiment results are presented based on cross-validatingregistrations of 111 pairs of T2-weighted magnetic resonance images and 3Dtransrectal ultrasound images from prostate cancer patients with a total ofover 4000 anatomical labels, yielding a median target registration error of 4.2mm on landmark centroids and a median Dice of 0.88 on prostate glands.
机译:从不同方式对医学图像进行空间对齐仍然是一项艰巨的任务,尤其是对于需要快速而强大的算法的术中应用而言。我们提出了一种弱监督,标签驱动的公式,用于从更高级别的标签对应关系中学习3D体素对应关系,从而绕过基于强度的经典图像相似性度量。在训练过程中,通过输出密集位移场(DDF)来优化卷积神经网络,该位移场会使运动图像中的一组可用的解剖学标记变形以匹配固定图像中的相应解剖标记。这些标记对包括实体器官,导管,血管,点仅在训练时才需要界标和其他临时结构,并且可以通过最小化翘曲的移动标签和固定标签的交叉熵函数来在空间上对齐。在推理过程中,训练有素的网络会使用一对新图像来预测最佳DDF,从而实现全自动,无标签,实时且可变形的配准。对于需要进行大规模全球变革的干预性应用,我们还提出了一种神经网络架构,以共同优化全球和局部位移。根据交叉验证配准来自前列腺癌患者的111对T2加权磁共振图像和3D经直肠超声图像的实验结果,总共具有4000多个解剖学标记,在标志性质心上产生的平均目标配准误差为4.2mm,前列腺上0.88的骰子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号